Rapid polyubiquitination and proteasomal degradation of a mutant form of NAD(P)H:quinone oxidoreductase 1.
نویسندگان
چکیده
The NAD(P)H:quinone oxidoreductase 1 (NQO1)*2 polymorphism is characterized by a single proline-to-serine amino acid substitution. Cell lines and tissues from organisms genotyped as homozygous for the NQO1*2 polymorphism are deficient in NQO1 activity. In studies with cells homozygous for the wild-type allele and cells homozygous for the mutant NQO1*2 allele, no difference in the half-life of NQO1 mRNA transcripts was observed. Similarly, in vitro transcription/translation studies showed that both wild-type and mutant NQO1 coding regions were transcribed and translated into full-length protein with equal efficiency. Protein turnover studies in NQO1 wild-type and mutant cell lines demonstrated that the half-life of wild-type NQO1 was greater than 18 h, whereas the half-life of mutant NQO1 was 1.2 h. Incubation of NQO1 mutant cell lines with proteasome inhibitors increased the amount of immunoreactive NQO1 protein, suggesting that mutant protein may be degraded via the proteasome pathway. Additional studies were performed using purified recombinant NQO1 wild-type and mutant proteins incubated in a rabbit reticulocyte lysate system. In these studies, no degradation of wild-type NQO1 protein was observed; however, mutant NQO1 protein was completely degraded in 2 h. Degradation of mutant NQO1 was inhibited by proteasome inhibitors and was ATP-dependent. Mutant NQO1 incubated in rabbit reticulocyte lysate with MG132 resulted in the accumulation of proteins with increased molecular masses that were immunoreactive for both NQO1 and ubiquitin. These data suggest that wild-type NQO1 persists in cells whereas mutant NQO1 is rapidly degraded via ubiquitination and proteasome degradation.
منابع مشابه
Inhibition of NAD(P)H:quinone oxidoreductase 1 activity and induction of p53 degradation by the natural phenolic compound curcumin.
NAD(P)H:quinone oxidoreductase 1 (NQO1) regulates the stability of the tumor suppressor WT p53. NQO1 binds and stabilizes WT p53, whereas NQO1 inhibitors including dicoumarol and various other coumarins and flavones induce ubiquitin-independent proteasomal p53 degradation and thus inhibit p53-induced apoptosis. Here, we show that curcumin, a natural phenolic compound found in the spice turmeric...
متن کاملNRH:quinone oxidoreductase 2 and NAD(P)H:quinone oxidoreductase 1 protect tumor suppressor p53 against 20s proteasomal degradation leading to stabilization and activation of p53.
Tumor suppressor p53 is either lost or mutated in several types of cancer. MDM2 interaction with p53 results in ubiquitination and 26S proteasomal degradation of p53. Chronic DNA damage leads to inactivation of MDM2, stabilization of p53, and apoptotic cell death. Here, we present a novel MDM2/ubiquitination-independent mechanism of stabilization and transient activation of p53. The present stu...
متن کاملRetraction: NRH:Quinone Oxidoreductase 2 and NAD(P)H:Quinone Oxidoreductase 1 Protect Tumor Suppressor p53 against 20S Proteasomal Degradation Leading to Stabilization and Activation of p53.
The authors wish to retract the article titled "NRH:Quinone Oxidoreductase 2 and NAD(P)H:Quinone Oxidoreductase 1 Protect Tumor Suppressor p53 against 20S ProteasomalDegradation Leading to Stabilization andActivation of p53," whichwas published in the June 1, 2007, issue of Cancer Research (1). As a result of an error, the p53 and NQO2 panels in Fig. 6A were reused from Fig. 3B of the article t...
متن کاملP53 hot-spot mutants are resistant to ubiquitin-independent degradation by increased binding to NAD(P)H:quinone oxidoreductase 1.
Proteasomal degradation of p53 is mediated by two alternative pathways that are either dependent or independent of both Mdm2 and ubiquitin. The ubiquitin-independent pathway is regulated by NAD(P)H: quinone oxidoreductase 1 (NQO1) that stabilizes p53. The NQO1 inhibitor dicoumarol induces ubiquitin-independent p53 degradation. We now show that, like dicoumarol, several other coumarin and flavon...
متن کاملGeneration of Helper Plasmids Encoding Mutant Adeno-associated Virus Type 2 Capsid Proteins with Increased Resistance against Proteasomal Degradation
Objective(s): Adeno-associated virus type 2 (AAV2) vectors are widely used for both experimental and clinical gene therapy. A recent research has shown that the performance of these vectors can be greatly improved by substitution of specific surface-exposed tyrosine residues with phenylalanines. In this study, a fast and simple method is presented to generate AAV2 vector helper plasmids encod...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular pharmacology
دوره 59 2 شماره
صفحات -
تاریخ انتشار 2001